.. _Tutorial: using NeurEco Python API for a Tabular Regression problem: Tutorial: using NeurEco Python API for a Tabular Regression problem ======================================================================= The following section uses the test case :std:ref:`Metamaterial Antennas test case`. This test case is included in the NeurEco installation package. Build a model --------------- * Create an empty directory (MetamaterialAntenna Example), extract the :std:ref:`Metamaterial Antennas test case` test case data there. The created directory contains the following files: * x_test.csv * y_test.csv * x_train.csv * y_train.csv * Import the required libraries (NeurEco and NumPy): .. code-block:: python from NeurEco import NeurEcoTabular as Tabular import numpy as np * Load the training data: .. code-block:: python x_train = np.genfromtxt("x_train.csv", delimiter=";", skip_header=True) y_train = np.genfromtxt("y_train.csv", delimiter=";", skip_header=True) * Initialize a NeurEco object to handle the **Regression** problem: .. code-block:: python builder = Tabular.Regressor() All the methods provided by the **Regressor** class can be viewed by calling the *__methods__* attributes: .. code-block:: python print(builder.__methods__) .. code-block:: text *** NeurEco Tabular Regressor methods: *** - load - save - delete - evaluate - build - get_input_count - get_output_count - load_model_from_checkpoint - get_number_of_networks_from_checkpoint - get_weights - export_fmu - export_c - export_onnx - export_vba - compute_error - plot_network - forward_derivative - gradient - set_weights - perform_input_sweep To understand what each parameter of any method does and how to use it, print the doc of the method: .. code-block:: python print(builder.export_c.__doc__) .. code-block:: text exports a NeurEco tabular model to a header file :param h_file_path: path where the .h file will be saved :param precision: string: optional: "float" or "double": precision of the weights in the h file :return: export_status: int: 0 if export is ok, other if otherwise. * To build the model, run the **build** method with the building parameters adjusted to the problem at hand (see :std:ref:`Build NeurEco Regression model with the Python API`). For this example, the outputs are normalized per feature (meaning that each output is normalized apart, see :std:ref:`Normalizing the data`): .. code-block:: python builder.build(input_data=x_train, output_data=y_train, # the rest of these parameters are optional write_model_to="./MetamaterialAntennas/MetamaterialAntennas", checkpoint_address="./MetamaterialAntennas/MetamaterialAntennas.checkpoint", outputs_normalize_per_feature=True) * When **build** is called, NeurEco starts the building process: .. code-block:: text Validation Percentage will be used to get the validation data. This is due to: - one or all the validation data is set to None - validation indices is set to None info > info > _ __ ______ info > / | / /__ __ _______/ ____/________ info > / |/ / _ \/ / / / ___/ __/ / ___/ __ \ info > / /| / __/ /_/ / / / /___/ /__/ /_/ / info > /_/ |_/\___/\__,_/_/ /_____/\___/\____/ info > === A D A G O S === info > info > Version: 4.01.2474.0 Compiled with MSVC v1928 Oct 12 2022 Matlab runtime:no info > OpenMP: yes info > MKL: yes info > Reading data files... info > Reading Data from C:/Users/Sadok/AppData/Local/Temp/tmp3wmwwjv4/inputs_tab_train.npy info > Reading Data from C:/Users/Sadok/AppData/Local/Temp/tmp3wmwwjv4/outputs_tab_train.npy info > build for: 6 outputs and 7 inputs and 457 samples. info > Building Model During the build NeurEco saves the intermediate modes to the checkpoint file (defined by the parameter **checkpoint_address**). To load and use the intermediate models from this checkpoint: * Create a new NeurEco object in which to load the model: .. code-block:: python model = Tabular.Regressor() * Determine how many intermediate models the checkpoint contains: .. code-block:: python n = model.get_number_of_networks_from_checkpoint("./MetamaterialAntennas/MetamaterialAntennas.checkpoint") * Load any intermediate model from the checkpoint using its id (count starts with zero). For this example, at the moment of running the command :math:`n=6`, and the following command loads the intermediate model :math:`n°3 \ (id=2)`: .. code-block:: python model.load_model_from_checkpoint("./MetamaterialAntennas/MetamaterialAntennas.checkpoint", 2) Now **model** is a valid **Regression** model, and can be used as usual. * Check the number of trainable parameters each of the intermediate models has: .. code-block:: python for i in range(n): print("Loading model", i, " from checkpoint file:") model.load_model_from_checkpoint("./MetamaterialAntennas/MetamaterialAntennas.checkpoint", i) print("number of trainable parameters in intermediate model --", i, " is:", model.get_weights().size) .. code-block:: text Loading model 0 from checkpoint file: number of trainable parameters in intermediate model -- 0 is: 34 Loading model 1 from checkpoint file: number of trainable parameters in intermediate model -- 1 is: 62 Loading model 2 from checkpoint file: number of trainable parameters in intermediate model -- 2 is: 90 Loading model 3 from checkpoint file: number of trainable parameters in intermediate model -- 3 is: 132 Evaluate a model ------------------ * Load the testing data from the CSV files: .. code-block:: python x_test = np.genfromtxt("x_test.csv", delimiter=";", skip_header=True) y_test = np.genfromtxt("y_test.csv", delimiter=";", skip_header=True) * Create a **Regressor** object to use for the evaluation: .. code-block:: python evaluator = Tabular.Regressor() .. note:: It is possible to use the already existing **Regressor** object **builder** when the evaluation is done just after the **build**, and **builder** is still available. * Load the built model: .. code-block:: python load_state = evaluator.load("./MetamaterialAntennas/MetamaterialAntennas") .. note:: When building or evaluating a NeurEco model, all the used paths do not necessarily need to have an extension when they are passed as parameters to a NeurEco method. * To extract information from the loaded model, such as the number of inputs, the number of outputs and the weights array, run: .. code-block:: python n_inputs = evaluator.get_input_count() n_outputs = evaluator.get_output_count() weights = evaluator.get_weights() print("Number of Inputs:", n_inputs) print("Number of Outputs:", n_outputs) print("Number of trainable parameters:", weights.size) .. code-block:: text Number of Inputs: 7 Number of Outputs: 6 Number of trainable parameters: 458 * To plot the network graph (this operation requires *matplotlib* library installed, see :std:ref:`Plot a NeurEco network Regression Python API`): .. code-block:: python evaluator.plot_network() .. figure:: ./images/MetamaterialAntennaPythonNetworkPlot.png :width: 800 :alt: MetamaterialAntennaPythonNetworkPlot :align: center Python API operations: plotting a network: test case - MetamaterialAntennas * To evaluate the model on the test data: .. code-block:: python neureco_outputs = evaluator.evaluate(x_test) l2_error = evaluator.compute_error(neureco_outputs, y_test) print("L2 relative error (%):", 100 * l2_error) .. code-block:: text L2 relative error (%): 1.4545507588248332 .. note:: During evaluation, the normalization is carried out by the model and its parameters are not relative to the data set being evaluated, but are the global parameters computed during the **build** of the model. * To perform an input sweep (see :std:ref:`Performing an input sweep`, this operation requires *matplotlib* library installed), run, for example: .. code-block:: python evaluator.perform_input_sweep(x=x_test[49, :], input_id=0, input_interval=[2143, 6956.], output_id=0) .. figure:: ./images/MetamaterialAntennaPythonInputSweep.png :width: 800 :alt: MetamaterialAntennaPythonInputSweep :align: center Python API operations: Performing an input sweep: test case - MetamaterialAntennas * To save the model in the native NeurEco binary format: .. code-block:: python save_state = evaluator.save("MetamaterialAntennas/NewDir/SameModel") * To export the model, run one of the following commands (*embed* license is required): .. code-block:: python evaluator.export_c("./MetamaterialAntennas/MetamaterialAntennas.h", precision="float") evaluator.export_onnx("./MetamaterialAntennas/MetamaterialAntennas.onnx", precision="float") evaluator.export_fmu("./MetamaterialAntennas/MetamaterialAntennas.fmu") evaluator.export_vba("./MetamaterialAntennas/MetamaterialAntennas.bas") .. warning:: Once the NeurEco object is no longer needed, free the memory by deleting the object by calling the **delete** method. For the example above, three objects must be deleted: .. code-block:: python builder.delete() evaluator.delete() model.delete()